使用 sklearn 进行数学建模的通用模板

2023-09-20 09:15:50

前言

无论是本科和研究生都会有的数学建模含金量还是很高的,下面将介绍一下进行数学建模的一些基本操作方法,这里主要是利用sklearn 进行建模,包括前期的一些数据预处理以及一些常用的机器学习模型以及一些简单粗暴的通用建模步骤,仅代表我自己意见。

一、数学建模常见的问题类型

常见的问题类型只有三种:分类、回归、聚类。而明确具体问题对应的类型也很简单。比如,如果你需要通过输入数据得到一个类别变量,那就是分类问题。
分成两类就是二分类问题,分成两类以上就是多分类问题。常见的有:判别一个邮件是否是垃圾邮件、根据图片分辩图片里的是猫还是狗等等。
如果你需要通过输入数据得到一个具体的连续数值,那就是回归问题。比如:预测某个区域的房价等。
常用的分类和回归算法算法有:RF(随机森林)、SVM (支持向量机) 、xgboost、KNN、LR算法、SGD (随机梯度下降算法)、Bayes (贝叶斯估计)以及随机森林等。这些算法大多都既可以解分类问题,又可以解回归问题。
如果你的数据集有对应的属性标签,那我们通常要做的就是对数据划分训练集和验证集,然后再进行预测和评估,选用不同的评价指标来进行评估,比如常见的有accuracy (准确率)、pcc(相关系数)、mse(平均绝对误差)等值。
如果你的数据集并没有对应的属性标签,你要做的,是发掘这组样本在空间的分布, 比如分析哪些样本靠的更近,哪些样本之间离得很远, 这就是属于聚类问题。常用的聚类算法有k-means算法。

二、使用步骤

1.数据集准备工作

在介绍万能模板之前,为了能够更深刻地理解这三个模板,我们加载一个Iris(鸢尾花)数据集来作为应用万能模板的小例子,Iris数据集在前边的文章中已经提到过多次了

代码如下(示例):

from sklearn.datasets import load_iris
data = load_iris()
x = data.data
y = data.target

x值如下,可以看到scikit-learn把数据集经过去除空值处理放在了array里,所以x是一个(150,4)的数组,保存了150个数据的4个特征:
[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]
[4.4 2.9 1.4 0.2]
[4.9 3.1 1.5 0.1]
[5.4 3.7 1.5 0.2]
[4.8 3.4 1.6 0.2]
[4.8 3. 1.4 0.1]
[4.3 3. 1.1 0.1]
[5.8 4. 1.2 0.2]
[5.7 4.4 1.5 0.4]
[5.4 3.9 1.3 0.4]
[5.1 3.5 1.4 0.3]
[5.7 3.8 1.7 0.3]
[5.1 3.8 1.5 0.3]
[5.4 3.4 1.7 0.2]
[5.1 3.7 1.5 0.4]
[4.6 3.6 1. 0.2]
[5.1 3.3 1.7 0.5]
[4.8 3.4 1.9 0.2]
[5. 3. 1.6 0.2]
[5. 3.4 1.6 0.4]
[5.2 3.5 1.5 0.2]
[5.2 3.4 1.4 0.2]
[4.7 3.2 1.6 0.2]
[4.8 3.1 1.6 0.2]
[5.4 3.4 1.5 0.4]
[5.2 4.1 1.5 0.1]
[5.5 4.2 1.4 0.2]
[4.9 3.1 1.5 0.2]
[5. 3.2 1.2 0.2]
[5.5 3.5 1.3 0.2]
[4.9 3.6 1.4 0.1]
[4.4 3. 1.3 0.2]
[5.1 3.4 1.5 0.2]
[5. 3.5 1.3 0.3]
[4.5 2.3 1.3 0.3]
[4.4 3.2 1.3 0.2]
[5. 3.5 1.6 0.6]
[5.1 3.8 1.9 0.4]
[4.8 3. 1.4 0.3]
[5.1 3.8 1.6 0.2]
[4.6 3.2 1.4 0.2]
[5.3 3.7 1.5 0.2]
[5. 3.3 1.4 0.2]
[7. 3.2 4.7 1.4]
[6.4 3.2 4.5 1.5]
[6.9 3.1 4.9 1.5]
[5.5 2.3 4. 1.3]
[6.5 2.8 4.6 1.5]
[5.7 2.8 4.5 1.3]
[6.3 3.3 4.7 1.6]
[4.9 2.4 3.3 1. ]
[6.6 2.9 4.6 1.3]
[5.2 2.7 3.9 1.4]
[5. 2. 3.5 1. ]
[5.9 3. 4.2 1.5]
[6. 2.2 4. 1. ]
[6.1 2.9 4.7 1.4]
[5.6 2.9 3.6 1.3]
[6.7 3.1 4.4 1.4]
[5.6 3. 4.5 1.5]
[5.8 2.7 4.1 1. ]
[6.2 2.2 4.5 1.5]
[5.6 2.5 3.9 1.1]
[5.9 3.2 4.8 1.8]
[6.1 2.8 4. 1.3]
[6.3 2.5 4.9 1.5]
[6.1 2.8 4.7 1.2]
[6.4 2.9 4.3 1.3]
[6.6 3. 4.4 1.4]
[6.8 2.8 4.8 1.4]
[6.7 3. 5. 1.7]
[6. 2.9 4.5 1.5]
[5.7 2.6 3.5 1. ]
[5.5 2.4 3.8 1.1]
[5.5 2.4 3.7 1. ]
[5.8 2.7 3.9 1.2]
[6. 2.7 5.1 1.6]
[5.4 3. 4.5 1.5]
[6. 3.4 4.5 1.6]
[6.7 3.1 4.7 1.5]
[6.3 2.3 4.4 1.3]
[5.6 3. 4.1 1.3]
[5.5 2.5 4. 1.3]
[5.5 2.6 4.4 1.2]
[6.1 3. 4.6 1.4]
[5.8 2.6 4. 1.2]
[5. 2.3 3.3 1. ]
[5.6 2.7 4.2 1.3]
[5.7 3. 4.2 1.2]
[5.7 2.9 4.2 1.3]
[6.2 2.9 4.3 1.3]
[5.1 2.5 3. 1.1]
[5.7 2.8 4.1 1.3]
[6.3 3.3 6. 2.5]
[5.8 2.7 5.1 1.9]
[7.1 3. 5.9 2.1]
[6.3 2.9 5.6 1.8]
[6.5 3. 5.8 2.2]
[7.6 3. 6.6 2.1]
[4.9 2.5 4.5 1.7]
[7.3 2.9 6.3 1.8]
[6.7 2.5 5.8 1.8]
[7.2 3.6 6.1 2.5]
[6.5 3.2 5.1 2. ]
[6.4 2.7 5.3 1.9]
[6.8 3. 5.5 2.1]
[5.7 2.5 5. 2. ]
[5.8 2.8 5.1 2.4]
[6.4 3.2 5.3 2.3]
[6.5 3. 5.5 1.8]
[7.7 3.8 6.7 2.2]
[7.7 2.6 6.9 2.3]
[6. 2.2 5. 1.5]
[6.9 3.2 5.7 2.3]
[5.6 2.8 4.9 2. ]
[7.7 2.8 6.7 2. ]
[6.3 2.7 4.9 1.8]
[6.7 3.3 5.7 2.1]
[7.2 3.2 6. 1.8]
[6.2 2.8 4.8 1.8]
[6.1 3. 4.9 1.8]
[6.4 2.8 5.6 2.1]
[7.2 3. 5.8 1.6]
[7.4 2.8 6.1 1.9]
[7.9 3.8 6.4 2. ]
[6.4 2.8 5.6 2.2]
[6.3 2.8 5.1 1.5]
[6.1 2.6 5.6 1.4]
[7.7 3. 6.1 2.3]
[6.3 3.4 5.6 2.4]
[6.4 3.1 5.5 1.8]
[6. 3. 4.8 1.8]
[6.9 3.1 5.4 2.1]
[6.7 3.1 5.6 2.4]
[6.9 3.1 5.1 2.3]
[5.8 2.7 5.1 1.9]
[6.8 3.2 5.9 2.3]
[6.7 3.3 5.7 2.5]
[6.7 3. 5.2 2.3]
[6.3 2.5 5. 1.9]
[6.5 3. 5.2 2. ]
[6.2 3.4 5.4 2.3]
[5.9 3. 5.1 1.8]]
y值如下,共有150行,其中0、1、2分别代表三类花:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 2]
上面的是 x 数据,下边的是 y 数据,我们可以看到此时的数据集是带有数据标签的,所以此时建立模型的目的就是首先用一部分的数据进行训练,然后用另一部分数据进行预测,并且与其已有的标签进行对比验证,判断其预测准确性。

2.数据集拆分

代码如下(示例):

from sklearn.model_selection import train_test_split
train_x,test_x,train_y,test_y = train_test_split(x,y,test_size=0.1,random_state=0)

数据集拆分是为了验证模型在训练集和测试集是否过拟合,使用train_test_split的目的是保证从数据集中均匀拆分出测试集。这里,简单把10%的数据集拿出来用作测试集。
test_size=0.1 是指拿出10%的数据用来做测试,test_size=0.2 就是拿出20%的数据集用来做测试。

3.模型建立

在这里插入图片描述
根据这个模板的话其实只要是机器学习中的算法都可以拿来套用这个模板,不同的就是算法的位置和模型的参数不同,不知道算法具体位置的话大家当然也可以用科技来AI一下了,比如我们要调用支持向量回归:在这里插入图片描述
比如我们要调用AUC指标进行评价:
在这里插入图片描述
如果大家经常调用的话,每个包的存放位置都是有规律的,好多同类算法在一个集成包下。

#随机森林
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, r2_score

model_rf = RandomForestRegressor(n_estimators=500, random_state=42)
model_rf.fit(X_train, y_train)
# 预测测试集  
rf_pred = model_rf.predict(X_test)

# 计算MSE
rf_test_mse = mean_squared_error(y_test, rf_pred)
rf_test_rmse = np.sqrt(mean_squared_error(y_test, rf_pred))
# 计算R2分数  
rf_test_r2 = r2_score(y_test, rf_pred)
from sklearn.svm import SVR
import numpy as np

# 拟合SVR模型
svr_rbf = SVR(kernel='rbf') 

svr_rbf.fit(X_train, y_train)

from sklearn.metrics import mean_squared_error, r2_score

# 预测测试集  
svr_rbf_pred = svr_rbf.predict(X_test)

# 计算MSE
svr_rbf_test_mse = mean_squared_error(y_test, svr_rbf_pred)
svr_rbf_test_rmse = np.sqrt(mean_squared_error(y_test, svr_rbf_pred))
# 计算R2分数  
svr_rbf_test_r2 = r2_score(y_test, svr_rbf_pred)

4.模型改进方案2.0

在上一个版本当中,当你多次运行同一个程序就会发现:每次运行得到的精确度并不相同,而是在一定范围内浮动,这是因为数据输入模型之前会进行选择,每次训练时数据输入模型的顺序都不一样。所以即使是同一个程序,模型最后的表现也会有好有坏。
有些情况下,在训练集上,通过调整参数设置使模型的性能达到了最佳状态,但在测试集上却可能出现过拟合的情况。这个时候,我们在训练集上得到的评分不能有效反映出模型的泛化性能,这种情况下就是我们经常所说的过拟合问题,在训练数据集上通过调整模型参数等操作使得数据在训练集上的准确率达到了较高情况,但到了测试集上真正开始检验的时候准确率却没有那么高。
为了解决上述两个问题,还应该在训练集上划分出验证集(validation set)并结合交叉验证来解决。首先,在训练集中划分出不参与训练的验证集,只是在模型训练完成以后对模型进行评估,接着再在测试集上进行最后的评估。
但这样大大减少了可用于模型学习的样本数量,所以还需要采用交叉验证的方式多训练几次。比如说最常用的k-折交叉验证如下图所示,它主要是将训练集划分为 k 个较小的集合。然后将k-1份训练子集作为训练集训练模型,将剩余的 1 份训练集子集作为验证集用于模型验证。这样需要训练k次,最后在训练集上的评估得分取所有训练结果评估得分的平均值。
之所以说这样减少了可用于模型学习的样本数量是因为并不是所有的样本都用来训练,我们在进行模型训练的时候划分了一部分数据集用来与训练集的预测值进行比较,所以用来比较的这部分数据集是没有参与训练的,假如我们采用五折交叉验证的话进行过程如下图所示:
在这里插入图片描述
这时我们是将数据均匀的划分成五份,每次用四份来进行训练,一份来进行测试,执行五次,所以通过五折交叉验证我们相当于用五份数据都做了一次测试集,这样一方面可以让训练集的所有数据都参与训练,另一方面也通过多次计算得到了一个比较有代表性的得分。唯一的缺点就是计算代价很高,增加了k倍的计算量。
scikit-learn已经将优秀的数学家所想到的均匀拆分方法和程序员的智慧融合在了cross_val_score() 这个函数里了,只需要调用该函数即可,不需要自己想什么拆分算法,也不用写for循环进行循环训练。
在求精确度的时候,我们可以简单地输出平均精确度:

# 输出精确度的平均值
# print("训练集上的精确度: %0.2f " % scores1.mean())

但是既然我们进行了交叉验证,做了这么多计算量,单求一个平均值还是有点浪费了,可以利用下边代码捎带求出精确度的置信度:

# 输出精确度的平均值和置信度区间
print("训练集上的平均精确度: %0.2f (+/- %0.2f)" % (scores2.mean(), scores2.std() * 2))

以上说了那么多,下面让我们来看一下具体的应用案例:

### svm分类器

from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC

svm_model = SVC()
svm_model.fit(train_x,train_y)

scores1 = cross_val_score(svm_model,train_x,train_y,cv=5, scoring='accuracy')
# 输出精确度的平均值和置信度区间
print("训练集上的精确度: %0.2f (+/- %0.2f)" % (scores1.mean(), scores1.std() * 2))

scores2 = cross_val_score(svm_model,test_x,test_y,cv=5, scoring='accuracy')
# 输出精确度的平均值和置信度区间
print("测试集上的平均精确度: %0.2f (+/- %0.2f)" % (scores2.mean(), scores2.std() * 2))


print(scores1)
print(scores2)

输出:
训练集上的精确度: 0.96 (+/- 0.09)
测试集上的平均精确度: 0.80 (+/- 0.13)
[0.95833333 0.95833333 1. 1. 0.875 ]
[0.66666667 0.83333333 0.83333333 0.83333333 0.83333333]

# LogisticRegression分类器

from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression


lr_model = LogisticRegression()
lr_model.fit(train_x,train_y)

scores1 = cross_val_score(lr_model,train_x,train_y,cv=5, scoring='accuracy')
# 输出精确度的平均值和置信度区间
print("训练集上的精确度: %0.2f (+/- %0.2f)" % (scores1.mean(), scores1.std() * 2))

scores2 = cross_val_score(lr_model,test_x,test_y,cv=5, scoring='accuracy')
# 输出精确度的平均值和置信度区间
print("测试集上的平均精确度: %0.2f (+/- %0.2f)" % (scores2.mean(), scores2.std() * 2))

print(scores1)
print(scores2)

输出:
训练集上的精确度: 0.95 (+/- 0.10)
测试集上的平均精确度: 0.93 (+/- 0.16)
[0.95833333 0.91666667 1. 1. 0.875 ]
[1. 1. 0.83333333 1. 0.83333333]

模型改进方案3.0

以上都是通过算法的默认参数来训练模型的,不同的数据集适用的参数难免会不一样,scikit-learn对于不同的算法也提供了不同的参数可以自己调节。本文目的是构建一个万能算法框架构建模板,所以,这里只介绍一下一个通用的自动化调参方法。
首先要明确的是,scikit-learn提供了算法().get_params()方法来查看每个算法可以调整的参数,比如说,我们想查看SVM分类器算法可以调整的参数,可以:

SVC().get_params()

{‘C’: 1.0, ‘break_ties’: False, ‘cache_size’: 200, ‘class_weight’: None, ‘coef0’: 0.0, ‘decision_function_shape’: ‘ovr’, ‘degree’: 3, ‘gamma’: ‘scale’, ‘kernel’: ‘rbf’, ‘max_iter’: -1, ‘probability’: False, ‘random_state’: None, ‘shrinking’: True, ‘tol’: 0.001, ‘verbose’: False}
在这里插入图片描述
参数的形式如下:
在这里插入图片描述
程序就会按照顺序测试这几个参数的组合效果,根本不需要自己辛辛苦苦实现。假如我们要调节n个参数,每个参数有4个备选值。那么程序就会训练 4n 。当n为10的时候是 410 ,这是一个对于计算机来说庞大的计算量。而当我们将这10个参数拆分成5组,每次只调节两个参数,其他参数采用默认值,那么计算量就是5*4**2=80 ,计算量会大大减少。
列表的作用这是如此,保证了每次只调节列表中的一个字典中的参数。运行之后,best_model就是我们得到的最优模型,可以利用这个模型进行预测。
当然,best_model 还有好多好用的属性:
best_model.cv_results_:可以查看不同参数情况下的评价结果。
best_model.param_ :得到该模型的最优参数
best_model.best_score_: 得到该模型的最后评分结果

实现SVM分类器

###1、svm分类器
from sklearn.model_selection import cross_val_score,GridSearchCV
from sklearn.svm import SVC
svm_model = SVC()
params = [
        {'kernel': ['linear'], 'C': [1, 10, 100, 100]},
        {'kernel': ['poly'], 'C': [1], 'degree': [2, 3]},
        {'kernel': ['rbf'], 'C': [1, 10, 100, 100], 'gamma':[1, 0.1, 0.01, 0.001]}
        ]
best_model = GridSearchCV(svm_model, param_grid=params,cv = 5,scoring = 'accuracy')
best_model.fit(train_x,train_y)

查看最优得分:

best_model.best_score_

0.9583333333333334
查看最优参数:

best_model.best_params_

{‘C’: 10, ‘kernel’: ‘linear’}

查看最优模型的所有参数:

best_model.best_estimator_

输出:
SVC(C=10, kernel=‘linear’)
这里对于线性核我们只设置了两个可以调节的参数,所以这里出现了两个参数。
这个函数会显示出没有调参的参数,便于整体查看模型的参数。

查看每个参数的交叉验证结果:

best_model.cv_results_

在这里插入图片描述
这个命令显示的参数很多,平常一般不用

总结

这里简单介绍了数学建模经常会用到的一些操作以及基本流程步骤,基本的功能都可以实现了,当然还有很多其他部分还需要再细化,比如说数据处理部分,对于缺失值如何做到有效的填补以及如何由文字转为编码格式进行分析等,后续会进行更加详细的补充和分析。

更多推荐

【Linux】共享内存

共享内存系统接口创建共享内存区域shmget关联共享区域shmat去除共享关联shmdt删除共享内存区域共享内存特性共享内存当多个进程需要在其间共享数据时,共享内存提供了一种高效的方式。它允许多个进程将同一块内存映射到它们的地址空间中,使得它们可以直接读写该内存,而不需要通过消息传递或其他形式的通信。系统接口在Linu

Java笔记:JVM参数调优

1.堆大小设置JVM中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在WindowsServer2003系统,3.5G物理内存,JDK5.0下测试,最大可设置为147

学内核之二十一:系统调用栈结构分析

目录一构建分析环境二栈的位置三栈开头8字节四寄存器环境五R4和R5六如何确定系统调用的具体函数一构建分析环境为了分析方便,做了如下测试环境:内核实现一个简单的创建字符设备的驱动应用层实现一个c程序,操作为打开内核创建的字符设备文件内核在处理open设备文件的接口中,将指针设置为空,并在该空指针上赋值。这样,就触发内核的

JVM内存模型及JAVA程序运行原理

目录平台JVM简介内存结构方法区堆一个对象的内存分配流程栈局部变量表操作栈动态连接方法返回地址程序计数器Metaspace元空间本地方法栈直接内存CodeCacheJAVA程序在JVM内是如何执行的平台Java是一种可以跨平台的编程语言。Java可以跨平台得益于JVM(java虚拟机)。我们把CPU处理器与操作系统的整

springboot大学生体质测试管理系统springboot009

大家好✌!我是CZ淡陌。一名专注以理论为基础实战为主的技术博主,将再这里为大家分享优质的实战项目,本人在Java毕业设计领域有多年的经验,陆续会更新更多优质的Java实战项目,希望你能有所收获,少走一些弯路,向着优秀程序员前行!🍅更多优质项目👇🏻👇🏻可点击下方获取🍅文章底部或评论区获取🍅Java项目精品实

flask要点与坑

简介Flask是一个用Python编写的Web应用程序框架,该框架简单易用、模块化、灵活性高。该笔记主要记录Flask的关键要点和容易踩坑的地方Flask日志配置Flask中的自带logger模块(也是python自带的模块),通过简单配置可以实现将日志记录到日志文件中(记录关键日志有助于以后分析问题);更详细的log

领域知识图谱的医生推荐系统:利用BERT+CRF+BiLSTM的医疗实体识别,建立医学知识图谱,建立知识问答系统

项目设计集合(人工智能方向):助力新人快速实战掌握技能、自主完成项目设计升级,提升自身的硬实力(不仅限NLP、知识图谱、计算机视觉等领域):汇总有意义的项目设计集合,助力新人快速实战掌握技能,助力用户更好利用CSDN平台,自主完成项目设计升级,提升自身的硬实力。专栏订阅:项目大全提升自身的硬实力[专栏详细介绍:项目设计

Golang goroutine MPG模式浅析

协程是通过使用关键字go调用(或执行)一个函数或者方法来实现的(也可以是匿名函数)。Go语言在语言层面上支持了并发,goroutine是Go语言提供的一种用户态线程,有时我们也称之为协程。所谓的协程,某种程度上也可以叫做轻量线程,它不由os而由应用程序创建和管理,因此使用开销较低(一般为4K)。我们可以创建很多的gor

【无公网IP内网穿透】Windows搭建Web站点

什么是cpolar?cpolar是一个非常强大的内网穿透工具,开发调试的必备利器。它可以将本地内网服务器的HTTP、HTTPS、TCP协议端口映射为公网地址端口,使得公网用户可以轻松访问您的内网服务器,无需部署至公网服务器。支持永久免费使用,无需公网IP,也无需设置路由器。概述本次教程中,我们将实现在windows上搭

第十九章、【Linux】开机流程、模块管理与Loader

19.1.1开机流程一览以个人计算机架设的Linux主机为例,当你按下电源按键后计算机硬件会主动的读取BIOS或UEFIBIOS来载入硬件信息及进行硬件系统的自我测试,之后系统会主动的去读取第一个可开机的设备(由BIOS设置的),此时就可以读入开机管理程序了。开机管理程序可以指定使用哪个核心文件来开机,并实际载入核心到

【Java系列】深入解析 Lambda表达式

序言你只管努力,其他交给时间,时间会证明一切。文章标记颜色说明:黄色:重要标题红色:用来标记结论绿色:用来标记一级论点蓝色:用来标记二级论点希望这篇文章能让你不仅有一定的收获,而且可以愉快的学习,如果有什么建议,都可以留言和我交流1基础介绍1.1概念介绍JavaLambda表达式是Java8中最重要的新特性之一。它们是

热文推荐