无线定位中TDOA时延估计算法matlab仿真

2023-09-22 01:33:11

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

...................................................................

figure;
plot(P1x,P1y,'b^','Markersize',8);
hold on;
plot(P2x,P2y,'b^','Markersize',8);
hold on;
plot(P3x,P3y,'b^','Markersize',8);
hold on;
text(P1x+800,P1y+800,'BS1');
text(P2x+800,P2y+800,'BS2');
text(P3x+800,P3y+800,'BS3');
xlabel('X axis');
ylabel('Y axis');
axis([-3*LL/20,3*LL,-3*LL/20,3*LL]);
grid on;
%这里随机生成移动物体的位置坐标
P0x = 2*LL/3;
P0y = 3*LL/4;
plot(P0x,P0y,'ro','Markersize',6);hold off;
text(P0x+800,P0y+800,'M');
title('基站位置');


%定义发送信号,这里发送信号根据要求使用AM发送信号
fc     = 1000;   %载波频率
tau    = 10^(-7);%时间间隔
T      = 1/fc/2; %频率周期
t      = -T*SL+tau:tau:T*SL;%信号的长度,这里使用8个周期进行
No     = length(t);       %信号的长度
A      = 1;%发送信号的幅度
s      = A*cos(2*pi*fc*t);
rng(1);%use matlab2013b else maybe error
%信道模拟
for j = 1:length(SNR)
    %加入噪声
    r2(1,:) = awgn(r(1,:),SNR(j));
    r2(2,:) = awgn(r(2,:),SNR(j));
    r2(3,:) = awgn(r(3,:),SNR(j));
    
    %加入多径 
    for jj = 1:N
        signals  = r2(jj,:);
        if Mpd == 0
           signals2 = signals;
        else
           signals2 = signals + 0.65*[zeros(1,Mpd),signals(1:end-Mpd)];   
        end
        r3(jj,:) = signals2;
    end
    %计算延迟相关运算
    Peak         = zeros(N,1);%定义相关峰的值
    delay_theory = zeros(N,1);%通过广义相关运算得到的延迟估计值
    for kk = 1:1:LL/10
        tau_theory = tau*kk;
        temp       = r3(1,(No/2-kk+1):(No-kk))*tau;
        for i =2:N
            data   = (sum(r3(i,No/2+1:No).*temp))^2;
            if Peak(i) < data
                Peak(i) = data;
                delay_theory(i) = tau_theory;
            end
        end
    end

    %通过TDOA方法,根据理论估计延迟得到实际的坐标点位置
    R_theory = zeros(1,N);
    Kj       = zeros(1,N);
    for i = 2:N
        R_theory(i) = delay_theory(i)*c;
        Kj(i)       = BS(i,1)^2 + BS(i,2)^2;
    end
.................................................................
     
    clear xyChan R1 cs bs as Q_tdoa K_tdoa D_tdoa C_tdoa H_tdoa Kj R_theory delay_theory Peak tau_theory temp
end

figure;
plot(SNR,Err,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
grid on;
title('误差曲线 % ');
xlabel('SNR');
ylabel('Err');
axis([10,80,0,5]);
 
%显示理论估计值
figure;
plot(P1x,P1y,'b^','Markersize',8);hold on;
plot(P2x,P2y,'b^','Markersize',8);hold on;
plot(P3x,P3y,'b^','Markersize',8);hold on;
axis([-3*LL/20,3*LL,-3*LL/20,3*LL]);
grid on;
xlabel('X axis');
ylabel('Y axis');
text(P1x+800,P1y+800,'BS1');
text(P2x+800,P2y+800,'BS2');
text(P3x+800,P3y+800,'BS3');
plot(P0x,P0y,'bo','Markersize',8);
hold on;
text(P0x-800,P0y-800,'M');

SEL = 1;

plot(X_theory(SEL),Y_theory(SEL),'rs','Markersize',8);hold on;
text(X_theory(SEL)+800,Y_theory(SEL)+800,'estimation');

R1 = sqrt((X_theory(SEL)-P1x)^2+(Y_theory(SEL)-P1y)^2); 
R2 = sqrt((X_theory(SEL)-P2x)^2+(Y_theory(SEL)-P2y)^2); 
R3 = sqrt((X_theory(SEL)-P3x)^2+(Y_theory(SEL)-P3y)^2);

alpha=0.01*pi:pi/100:0.55*pi;                     
x1= P1x+R1*cos(alpha); 
y1= P1y+R1*sin(alpha); 
hold on;
plot(x1,y1,'k-'); 

alpha=0.5*pi:pi/100:1.0*pi;                    
x2= P2x+R2*cos(alpha); 
y2= P2y+R2*sin(alpha); 
hold on;
plot(x2,y2,'k-'); 

alpha=1.1*pi:pi/100:1.95*pi;                    
x3= P3x+R3*cos(alpha); 
y3= P3y+R3*sin(alpha); 
hold on;
plot(x3,y3,'k-'); 
36_005m

4.算法理论概述

        无线定位中的TDOA(Time Difference of Arrival)时延估计算法是一种基于信号到达时间差的定位技术。它的基本原理是,通过测量信号从发射点到接收点的传播时间差,可以计算出发射点和接收点之间的距离差,从而确定发射点的位置。

       TDOA定位系统通常由多个接收器和一个发射器组成。发射器发送信号,接收器接收到信号后,测量信号的到达时间,并将时间信息发送回发射器。发射器根据接收器的时间测量值,计算出每个接收器与发射器之间的距离差,并根据距离差确定发射器的位置。

TDOA定位系统的数学公式可以表示为:

Δt = (d/c) * ΔT

       其中,Δt是信号到达时间差,d是发射器与接收器之间的距离,c是信号传播速度,ΔT是信号发送和接收之间的时间间隔。通过测量Δt,可以计算出d,从而确定发射器的位置。

       在实际应用中,TDOA定位系统通常采用多个接收器同时接收信号,并测量信号的到达时间。通过多点测量结果,可以计算出多个距离差,并利用多个距离差确定发射器的位置。这种算法通常采用最小二乘法、多边形法等数学方法进行求解。

       需要注意的是,TDOA定位系统需要高精度的计时设备和同步信号源,以保证测量结果的准确性。此外,信号传播路径上的建筑物、地形、气象条件等也会对测量结果造成影响,需要进行误差修正和处理。

       总之,TDOA时延估计算法是一种基于信号到达时间差的无线定位技术,其基本原理是通过测量信号传播时间差来计算发射器与接收器之间的距离差,从而确定发射器的位置。在实际应用中,需要高精度的计时设备和同步信号源,并考虑多种因素对测量结果的影响。

5.算法完整程序工程

OOOOO

OOO

O

更多推荐

SpringBatch ItemProcessor详解

ItemProcessor在SpringBatch中用于对每个读取的数据项(item)进行处理或转换。一、ItemProcessor具体功能数据清洗(DataCleansing):清理数据以确保数据的一致性和准确性。这可以包括去除不必要的空格、特殊字符、修复数据格式等。数据转换(DataTransformation):

mongodb语法以及springboot中操作mongodb数据库(query update Criteria的使用)

mongodb语法创建数据库:useDATABASE_NAME创建集合:db.createCollection("COLLECTION_NAME")插入数据:db.COLLECTION_NAME.insert({key:value})查询数据:db.COLLECTION_NAME.find()更新数据:db.COLLE

基于SpringBoot的阿博图书馆管理系统

目录前言一、技术栈二、系统功能介绍管理员功能模块用户功能模块前台首页功能模块三、核心代码1、登录模块2、文件上传模块3、代码封装前言随着社会的发展,计算机的优势和普及使得阿博图书馆管理系统的开发成为必需。阿博图书馆管理系统主要是借助计算机,通过对图书借阅等信息进行管理。减少管理员的工作,同时也方便广大用户对所需图书借阅

MongoDB索引

索引支持在MongoDB中高效执行查询。如果没有索引,MongoDB必须扫描集合中的每个文档才能返回查询结果。如果查询存在适当的索引,MongoDB将使用该索引来限制它必须扫描的文档数。尽管索引提高了查询性能,但添加索引对写入操作的性能有负面影响。对于具有高读写比率的集合,索引是昂贵的,因为每次插入都必须更新任何索引。

第四天:gec6818开发板串口蓝牙模块的使用与配置

串口通信串口是一种简单的通信接口,也是单片机中最常用最简单的通信方式通常传感器都是采用串口作为与上位机的通信接口ARM板有三个可外接传感器的串口接口,位于开发板右上角从上到下,分别是串口号串口驱动设备文件CON2“/dev/ttySAC1”CON3“/dev/ttySAC2”CON4“/dev/ttySAC3”将传感器

数据结构和算法(8):搜索树(二叉搜索树和AVL树)

查找所谓的查找或搜索,指从一组数据对象中找出符合特定条件者,这是构建算法的一种基本而重要的操作。其中的数据对象,统一地表示和实现为词条(entry)的形式;不同词条之间,依照各自的关键码(key)彼此区分。循关键码访问:查找的过程与结果,仅仅取决于目标对象的关键码。词条template<typenameK,typena

【MongoDB】docker部署社区版(一)

0、背景介绍项目中使用MongoDB了,服务器挂掉,自己在本地搭一个试试。1、版本选择首先有社区版和和商业版。我选的是社区版。链接:https://hub.docker.com/r/mongodb/mongodb-community-server/tags1.1、标签选择看到标签有两个大类,一个是Ubuntu一个是ub

Spring MongoDB

为什么选择MongoDB,而不是其它的数据库。在SQL和NoSQL之间有一个大的争论。在SQL中,创建Tables。在NoSQL中,我们不维持这个结构。为什么这样重要。因为SQL在19世纪70年代变得流行的时候,在那时存储是昂贵的。我们需要确保使用最小的存储,这样我们可以存储最大量的数据。这是SQL类型表的意义。在当前

网络编程day04(网络属性函数、广播、组播、TCP并发)

今日任务对于newfd的话,最好是另存然后传入给分支线程,避免父子线程操作同一个文件描述符1.广播:接收端代码:#include<stdio.h>#include<string.h>#include<stdlib.h>#include<sys/types.h>/*SeeNOTES*/#include<sys/socke

如何通过一键导出导入数据实现批量重命名文件名称

在日常办公中,我们经常需要对大量的文件进行重命名,以便更好地管理和查找文件。而且,有时候我们还需要将文件名称翻译成其他语言,以适应不同的工作需求。如何高效地完成这项任务呢?接下来,我将介绍一种方法,让你事半功倍。首先,你需要下载并安装一个名为“固乔文件管家”的软件。这是一款功能强大的文件管理工具,可以帮助你批量改名文件

山洪灾害预警方案(山洪预警解决方案的组成)

​随着气候变化的不断加剧,山洪灾害在许多地区成为了极具威胁性的自然灾害之一。为了帮助地方政府和居民更好地预防和应对山洪灾害,我们设计了一套基于星创易联的SR600工业路由器和DTU200的山洪灾害预警方案,并成功在某地区进行了部署。案例背景:我们选择了某山区作为实际部署的案例。这个地区常年受山洪的威胁,由于地处偏远,传

热文推荐